Human age estimation framework using different facial parts

Human age estimation from facial images has a wide range of real-world applications in human computer interaction (HCI). In this paper, we use the bio-inspired features (BIF) to analyze different facial parts: (a) eye wrinkles, (b) whole internal face (without forehead area) and (c) whole face (with...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Egyptian informatics journal 2011-03, Vol.12 (1), p.53-59
Hauptverfasser: El Dib, Mohamed Y., Onsi, Hoda M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Human age estimation from facial images has a wide range of real-world applications in human computer interaction (HCI). In this paper, we use the bio-inspired features (BIF) to analyze different facial parts: (a) eye wrinkles, (b) whole internal face (without forehead area) and (c) whole face (with forehead area) using different feature shape points. The analysis shows that eye wrinkles which cover 30% of the facial area contain the most important aging features compared to internal face and whole face. Furthermore, more extensive experiments are made on FG-NET database by increasing the number of missing pictures in older age groups using MORPH database to enhance the results.
ISSN:1110-8665
2090-4754
DOI:10.1016/j.eij.2011.02.002