Fibroblast growth factor-20 promotes the differentiation of Nurr1-overexpressing neural stem cells into tyrosine hydroxylase-positive neurons

Stem cells are currently considered as alternative cell resources for restorative transplantation strategies in Parkinson's disease. However, the mechanisms that induce differentiation of a stem cell toward the dopaminergic phenotype are still partly unknown thus hampering the production of dop...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neurobiology of disease 2004-11, Vol.17 (2), p.163-170
Hauptverfasser: Grothe, C., Timmer, M., Scholz, T., Winkler, C., Nikkhah, G., Claus, P., Itoh, N., Arenas, E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Stem cells are currently considered as alternative cell resources for restorative transplantation strategies in Parkinson's disease. However, the mechanisms that induce differentiation of a stem cell toward the dopaminergic phenotype are still partly unknown thus hampering the production of dopaminergic neurons from stem cells. In the past, FGF-20 has been found to promote the survival of ventral mesencephalic (VM) dopaminergic (DA) neurons in culture. We hereby provide evidence that FGF-20, a growth factor of the FGF family, is expressed in the adult and 6-OHDA-lesioned striatum and substantia nigra, but is not expressed by VM glia or DA neurons, suggesting that FGF-20 may work on DA neurons in a paracrine- or target-derived manner. We also found that co-culture of Nurr1-NSCs with Schwann cells overexpressing FGF-20 induced the acquisition of a neuronal morphology by the NSCs and the expression of tyrosine hydroxylase (TH) as assessed by immunocytochemistry, cell ELISA, and Western blot analysis. RT-PCR showed, that both, Schwann cells and Nurr1-NSCs (differentiated or not), expressed the FGF-1 receptor suggesting that both direct and indirect actions of FGF-20 are possible. We show that differentiated Nurr1 cells retained both neuronal morphology and TH expression after transplantation into the striatum of 6-OHDA-lesioned postnatal or adult rats, but that neuritogenesis was only observed after postnatal grafts. Thus, our results suggest that FGF-20 promotes the differentiation of Nurr1-NSCs into TH-positive neurons and that additional factors are required for the efficient differentiation of DA neurons in the adult brain.
ISSN:0969-9961
1095-953X
DOI:10.1016/j.nbd.2004.07.007