Semantic Segmentation for Buildings of Large Intra-Class Variation in Remote Sensing Images with O-GAN

Remote sensing building extraction is of great importance to many applications, such as urban planning and economic status assessment. Deep learning with deep network structures and back-propagation optimization can automatically learn features of targets in high-resolution remote sensing images. Ho...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Remote sensing (Basel, Switzerland) Switzerland), 2021-01, Vol.13 (3), p.475
Hauptverfasser: Sun, Shuting, Mu, Lin, Wang, Lizhe, Liu, Peng, Liu, Xiaolei, Zhang, Yuwei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Remote sensing building extraction is of great importance to many applications, such as urban planning and economic status assessment. Deep learning with deep network structures and back-propagation optimization can automatically learn features of targets in high-resolution remote sensing images. However, it is also obvious that the generalizability of deep networks is almost entirely dependent on the quality and quantity of the labels. Therefore, building extraction performances will be greatly affected if there is a large intra-class variation among samples of one class target. To solve the problem, a subdivision method for reducing intra-class differences is proposed to enhance semantic segmentation. We proposed that backgrounds and targets be separately generated by two orthogonal generative adversarial networks (O-GAN). The two O-GANs are connected by adding the new loss function to their discriminators. To better extract building features, drawing on the idea of fine-grained image classification, feature vectors for a target are obtained through an intermediate convolution layer of O-GAN with selective convolutional descriptor aggregation (SCDA). Subsequently, feature vectors are clustered into new, different subdivisions to train semantic segmentation networks. In the prediction stages, the subdivisions will be merged into one class. Experiments were conducted with remote sensing images of the Tibet area, where there are both tall buildings and herdsmen’s tents. The results indicate that, compared with direct semantic segmentation, the proposed subdivision method can make an improvement on accuracy of about 4%. Besides, statistics and visualizing building features validated the rationality of features and subdivisions.
ISSN:2072-4292
2072-4292
DOI:10.3390/rs13030475