Multispectral remote sensing for site-specific nitrogen fertilizer management

The objective of this work was to evaluate the use of multispectral remote sensing for site-specific nitrogen fertilizer management. Satellite imagery from the advanced spaceborne thermal emission and reflection radiometer (Aster) was acquired in a 23 ha corn-planted area in Iran. For the collection...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pesquisa agropecuaria brasileira 2013-10, Vol.48 (10), p.1394-1401
Hauptverfasser: Bagheri, Nikrooz, Ahmadi, Hojjat, Alavipanah, Seyed Kazem, Omid, Mahmoud
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The objective of this work was to evaluate the use of multispectral remote sensing for site-specific nitrogen fertilizer management. Satellite imagery from the advanced spaceborne thermal emission and reflection radiometer (Aster) was acquired in a 23 ha corn-planted area in Iran. For the collection of field samples, a total of 53 pixels were selected by systematic randomized sampling. The total nitrogen content in corn leaf tissues in these pixels was evaluated. To predict corn canopy nitrogen content, different vegetation indices, such as normalized difference vegetation index (NDVI), soil-adjusted vegetation index (Savi), optimized soil-adjusted vegetation index (Osavi), modified chlorophyll absorption ratio index 2 (MCARI2), and modified triangle vegetation index 2 (MTVI2), were investigated. The supervised classification technique using the spectral angle mapper classifier (SAM) was performed to generate a nitrogen fertilization map. The MTVI2 presented the highest correlation (R²=0.87) and is a good predictor of corn canopy nitrogen content in the V13 stage, at 60 days after cultivating. Aster imagery can be used to predict nitrogen status in corn canopy. Classification results indicate three levels of required nitrogen per pixel: low (0-2.5 kg), medium (2.5-3 kg), and high (3-3.3 kg). O objetivo deste trabalho foi avaliar o uso de sensoriamento remoto multiespectral no manejo sítio-específico da adubação nitrogenada. Imagens de satélite do "advanced spaceborne thermal emission e reflection radiometer" (Aster) foram obtidas em uma área de 23 ha cultivados com milho, no Irã. Para a coleta das amostras de campo, foi feita a seleção de 53 pixels, por meio do método de amostragem aleatória sistemática. Avaliou-se o teor de nitrogênio total nos tecidos foliares do milho, nesses pixels. Para estimar o teor de nitrogênio da parte aérea do milho, foram utilizados diferentes índices de vegetação, como "normalized difference vegetation index" (NDVI), "soil-adjusted vegetation index" (Savi), "optimized soil-adjusted vegetation index" (Osavi), "modified chlorophyll absorption ratio index 2" (MCARI2) e "modified triangle vegetation index 2" (MTVI2). Utilizou-se a técnica de classificação supervisionada com classificador "spectral angle mapper" (SAM) para a geração do mapa de adubação nitrogenada. O MTVI2 apresentou maior correlação (R²=0,87) e é um bom previsor do conteúdo de nitrogênio no estágio V13, 60 dias após o cultivo. Imagens Aster podem ser utilizadas pa
ISSN:0100-204X
1678-3921
0100-204X
DOI:10.1590/S0100-204X2013001000011