Realistic and simplified models of plant and leaf area indices for a seasonally dry tropical forest

•We developed PAI and LAI models that considers the seasonality of the Caatinga vegetation.•The PAI and LAI models allow easy retrieval of LAI by using remote sensing data.•All models consider the NIR band combined with a visible band. Leaf Area Index (LAI) models that consider all phenological stag...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of applied earth observation and geoinformation 2020-03, Vol.85, p.101992, Article 101992
Hauptverfasser: Miranda, Rodrigo de Queiroga, Nóbrega, Rodolfo Luiz Bezerra, Moura, Magna Soelma Beserra de, Raghavan, Srinivasan, Galvíncio, Josiclêda Domiciano
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:•We developed PAI and LAI models that considers the seasonality of the Caatinga vegetation.•The PAI and LAI models allow easy retrieval of LAI by using remote sensing data.•All models consider the NIR band combined with a visible band. Leaf Area Index (LAI) models that consider all phenological stages have not been developed for the Caatinga, the largest seasonally dry tropical forest in South America. LAI models that are currently used show moderate to high covariance when compared to in situ data, but they often lack accuracy in the whole spectra of possible values and do not consider the impact that the stems and branches have over LAI estimates, which is of great influence in the Caatinga. In this study, we develop and assess PAI (Plant Area Index) and LAI models by using ground-based measurements and satellite (Landsat) data. The objective of this study was to create and test new empirical models using a multi-year and multi-source of reflectance data. The study was based on measurements of photosynthetic photon flux density (PPFD) from above and below the canopy during the periods of 2011–2012 and 2016–2018. Through iterative processing, we obtained more than a million candidate models for estimating PAI and LAI. To clean up the small discrepancies in the extremes of each interpolated series, we smoothed out the dataset by fitting a logarithmic equation with the PAI data and the inverse contribution of WAI (Wood Area Index) to PAI, that is the portion of PAI that is actually LAI (LAIC). LAIC can be calculated as follows: LAIC=1-WAI/PAI). We subtracted the WAI values from the PAI to develop our in situ LAI dataset that was used for further analysis. Our in situ dataset was also used as a reference to compare our models with four other models used for the Caatinga, as well as the MODIS-derived LAI products (MCD15A3H/A2H). Our main findings were as follows: (i) Six models use NDVI (Normalized Difference Vegetation Index), SAVI (Soil-Adjusted Vegetation Index) and EVI (Enhanced Vegetation Index) as input, and performed well, with r2 ranging from 0.77 to 0.79 (PAI) and 0.76 to 0.81 (LAI), and RMSE with a minimum of 0.41 m2 m−2 (PAI) and 0.40 m2 m−2 (LAI). The SAVI models showed values 20% and 32% (PAI), and 21% and 15% (LAI) smaller than those found for the models that use EVI and NDVI, respectively; (ii) the other models (ten) use only two bands, and in contrast to the first six models, these new models may abstract other physical processes and component
ISSN:1569-8432
1872-826X
DOI:10.1016/j.jag.2019.101992