A Study of the Dynamic Response of Carbon Fiber Reinforced Epoxy (CFRE) Prepregs for Musical Instrument Manufacturing

Composite materials are presented in a wide variety of industrial sectors as an alternative to traditionally used materials. In recent years, a new sector has increasingly used these kinds of materials: the manufacture of musical instruments. Resonances of different elements that make up the geometr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences 2019-11, Vol.9 (21), p.4615
Hauptverfasser: Ibáñez-Arnal, Manuel, Doménech-Ballester, Luis, Sánchez-López, Fernando
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Composite materials are presented in a wide variety of industrial sectors as an alternative to traditionally used materials. In recent years, a new sector has increasingly used these kinds of materials: the manufacture of musical instruments. Resonances of different elements that make up the geometries of musical instruments are commonly used with the aim of enhancing aspects of the timbre. These are sensitive to the mechanical characteristics of the material, so it is important to guarantee the properties of the composite. To do this, it is not uncommon to use pre-impregnated fibers (prepregs) which allow fine control of final volumetric fractions of the composite. Autoclaving is a high-quality process used to guarantee the desired mechanical properties in a composite, reducing porosity and avoiding delamination, but significantly raising production costs. On the contrary, manufacture without autoclaving increases competitiveness by eliminating the costs associated with autoclave production. In this paper, differences in dynamic behavior are evaluated under free conditions of different Carbon Fiber Reinforced Epoxy (CFRE) prepreg boards, processed by autoclave and out-of-autoclave. The results of the complex module are presented according to the frequency, quantifying the variations in the vibratory behavior of the material due to the change of processing.
ISSN:2076-3417
2076-3417
DOI:10.3390/app9214615