Mixed Matrix Poly(Vinyl Alcohol)-Copper Nanofibrous Anti-Microbial Air-Microfilters
Membranes decorated with biocide materials have shown great potential for air sanitization but can suffer from biocide agent leaching by dissolution in water. In order to tackle the diffusion of biocide metal ions from the fiber matrix, composite nanofiber membranes of poly(vinyl alcohol) (PVA) cros...
Gespeichert in:
Veröffentlicht in: | Membranes (Basel) 2019-07, Vol.9 (7), p.87 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Membranes decorated with biocide materials have shown great potential for air sanitization but can suffer from biocide agent leaching by dissolution in water. In order to tackle the diffusion of biocide metal ions from the fiber matrix, composite nanofiber membranes of poly(vinyl alcohol) (PVA) cross-linked with copper (II) acetate have been successfully engineered via sol-gel electrospinning, providing a stable mean for air bactericidal microfiltration. The novelty lies in the bonding strength and homogeneous distribution of the fiber surface biocide, where biocide metals are incorporated as a sol within a polymer matrix. The electrospinning of bead-free composite nanofibers offered over 99.5% filtration efficiency for PM
, with a theoretical permeance above 98%. The PVA/copper nanofiber membranes also showed satisfactory anti-bacterial performance against the gram-negative
within 24 h, making them promising materials for the remediation of airborne bacteria. The mechanical and chemical stability of the engineered nanocomposite electrospun nanofiber webs added to the natural biodegradability of the materials, by offering ideal low-cost sanitary solutions for the application of air disinfection in both indoor and outdoor fitting a circular economy strategy where advanced materials are redesigned to be sustainable. |
---|---|
ISSN: | 2077-0375 2077-0375 |
DOI: | 10.3390/membranes9070087 |