Monitoring of manufacturing process using bayesian EWMA control chart under ranked based sampling designs

Control charts, including exponentially moving average (EWMA) , are valuable for efficiently detecting small to moderate shifts. This study introduces a Bayesian EWMA control chart that employs ranked set sampling (RSS) with known prior information and two distinct loss functions (LFs), the Square E...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2023-10, Vol.13 (1), p.18240-18240, Article 18240
Hauptverfasser: Khan, Imad, Noor-ul-Amin, Muhammad, Khan, Dost Muhammad, Ismail, Emad A. A., Sumelka, Wojciech
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Control charts, including exponentially moving average (EWMA) , are valuable for efficiently detecting small to moderate shifts. This study introduces a Bayesian EWMA control chart that employs ranked set sampling (RSS) with known prior information and two distinct loss functions (LFs), the Square Error Loss function (SELF) and the Linex Loss function (LLF), for posterior and posterior predictive distributions. The chart's performance is assessed using average run length (ARL) and standard deviation of run length (SDRL) profiles, and it is compared to the Bayesian EWMA control chart based on simple random sampling (SRS). The results indicate that the proposed control chart detects small to moderate shifts more effectively. The application in semiconductor manufacturing provides concrete evidence that the Bayesian EWMA control chart, when implemented with RSS schemes, demonstrates a higher degree of sensitivity in detecting deviations from normal process behavior. Comparison to the Bayesian EWMA control chart using SRS, it exhibits a superior ability to identify and flag instances where the manufacturing process is going out of control. This heightened sensitivity is critical for promptly addressing and rectifying issues, which ultimately contributes to improved quality control in semiconductor production.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-023-45553-x