A novel deep intronic variant introduce dystrophin pseudoexon in Becker muscular dystrophy: A case report
Most pathogenic DMD variants are detectable and interpretable by standard genetic testing for dystrophinopthies. However, approximately 1∼3% of dystrophinopthies patients still do not have a detectable DMD variant after standard genetic testing, most likely due to structural chromosome rearrangement...
Gespeichert in:
Veröffentlicht in: | Heliyon 2024-03, Vol.10 (6), p.e28020, Article e28020 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Most pathogenic DMD variants are detectable and interpretable by standard genetic testing for dystrophinopthies. However, approximately 1∼3% of dystrophinopthies patients still do not have a detectable DMD variant after standard genetic testing, most likely due to structural chromosome rearrangements and/or deep intronic pseudoexon-activating variants. Here, we report on a boy with a suspected diagnosis of Becker muscular dystrophy (BMD) who remained without a detectable DMD variant after exonic DNA-based standard genetic testing. Dystrophin mRNA studies and genomic Sanger sequencing were performed in the boy, followed by in silico splicing analyses. We successfully detected a novel deep intronic disease-causing variant in the DMD gene (c.2380 + 3317A > T), which consequently resulting in a new dystrophin pseudoexon activation through the enhancement of a cryptic donor splice site. The patient was therefore genetically diagnosed with BMD. Our case report further emphasizes the significant role of disease-causing splicing variants within deep intronic regions in genetically undiagnosed dystrophinopathies. |
---|---|
ISSN: | 2405-8440 2405-8440 |
DOI: | 10.1016/j.heliyon.2024.e28020 |