Assessment of function, histopathological changes, and oxidative stress in liver tissue due to ionizing and non-ionizing radiations
Compared to past decades, humans are exposed to rapidly increasing levels of radiofrequency electromagnetic radiations (RF-EMF). Despite numerous studies, the biological effects of human exposure to different levels of RF-EMF are not fully understood yet. This study aimed to evaluate the bioeffects...
Gespeichert in:
Veröffentlicht in: | Caspian journal of internal medicine 2020-05, Vol.11 (3), p.315-323 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Compared to past decades, humans are exposed to rapidly increasing levels of radiofrequency electromagnetic radiations (RF-EMF). Despite numerous studies, the biological effects of human exposure to different levels of RF-EMF are not fully understood yet. This study aimed to evaluate the bioeffects of exposure to "900/1800 MHz" and "2.4 GHz" RF-EMFs, and x-rays alone as well as their potential interactions, i.e. inducing simple additive, adaptive, or synergistic effects.
120 Wistar rats were randomly divided into ten groups of 12 each. The rats were exposed to RF-EMF, 10 cGy, and 8 Gy x-rays, a combination of these exposures, or only sham-exposed. The levels of liver enzymes were determined in serum samples by an auto-analyzer. Moreover, the histopathological changes, and the levels of malondialdehyde (MDA), nitric oxide, ferric reducing antioxidant power, total thiols, and protein carbonyl (PCO) were measured.
Among the markers of liver function, gamma-glutamyltransferase was not associated with irradiation but, aspartate transaminase, alanine transaminase, and alkaline phosphatase showed some levels of association. MDA and PCO levels after 8 Gy irradiation increased, but pre-exposure to RF-EMF could modulate their changes. At the cellular level, the frequency of lobular inflammation was associated with the type of intervention.
The exposure to both ionizing and non-ionizing radiations could alter some liver function tests. A short term pre-exposure to RF-EMF before exposure to an 8 Gy challenging dose of x-rays caused the alterations in oxidative stress markers and liver function tests, which indicate that oxidative stress is possibly involved in the adaptive response. |
---|---|
ISSN: | 2008-6164 2008-6172 |
DOI: | 10.22088/cjim.11.3.315 |