Rapid Diagnosis of HIV-1 virus by Near Infrared Spectroscopy: based on Partial least squares regression

Currently, the laboratory diagnostic tests available for HIV-1 viral infection are mainly based on serological testing which relies on enzyme-linked immunosorbent assay (ELISA) for blood HIV antigen detection and reverse transcription polymerase chain reaction (RT-PCR) for HIV specific RNA sequence...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:E3S web of conferences 2021-01, Vol.271, p.3067
Hauptverfasser: He, Xiaohong, Song, Zhihong, Shang, Haifei, Yang, Silang, Wu, Lujing, Ma, Yan, Sun, Yu, Xia, Xuejiao, Wang, Quangui, Luo, Bei, Gu, Chaojiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Currently, the laboratory diagnostic tests available for HIV-1 viral infection are mainly based on serological testing which relies on enzyme-linked immunosorbent assay (ELISA) for blood HIV antigen detection and reverse transcription polymerase chain reaction (RT-PCR) for HIV specific RNA sequence identification. However, these methods are expensive and time-consuming, and suffer from false positive and/or false negative results. Thus, there is an urgent need for developing a cost effective, rapid and accurate diagnostic method for HIV-1 infection. In order to reduce the barriers for effective diagnosis, a near-infrared spectroscopy (NIR) method was used to detect the HIV-1 virus in human serum, specifically, three absorption peaks with dose-dependent at 1582nm, 1810nm and 2363nm were found by multiple FBiPLSR test analysis for HIV-nano and HIV-EGFP, but not for MLV. Therefore, we recommend the use of 1582nm, 1810nm and 2363nm as the characteristic spectrum peak, for early screening and rapid diagnosis of serum HIV.
ISSN:2267-1242
2555-0403
2267-1242
DOI:10.1051/e3sconf/202127103067