Monte Carlo study of the pseudogap and superconductivity emerging from quantum magnetic fluctuations
The origin of the pseudogap behavior, found in many high- T c superconductors, remains one of the greatest puzzles in condensed matter physics. One possible mechanism is fermionic incoherence, which near a quantum critical point allows pair formation but suppresses superconductivity. Employing quant...
Gespeichert in:
Veröffentlicht in: | Nature communications 2022-05, Vol.13 (1), p.2655-2655, Article 2655 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The origin of the pseudogap behavior, found in many high-
T
c
superconductors, remains one of the greatest puzzles in condensed matter physics. One possible mechanism is fermionic incoherence, which near a quantum critical point allows pair formation but suppresses superconductivity. Employing quantum Monte Carlo simulations of a model of itinerant fermions coupled to ferromagnetic spin fluctuations, represented by a quantum rotor, we report numerical evidence of pseudogap behavior, emerging from pairing fluctuations in a quantum-critical non-Fermi liquid. Specifically, we observe enhanced pairing fluctuations and a partial gap opening in the fermionic spectrum. However, the system remains non-superconducting until reaching a much lower temperature. In the pseudogap regime the system displays a “gap-filling" rather than “gap-closing" behavior, similar to the one observed in cuprate superconductors. Our results present direct evidence of the pseudogap state, driven by superconducting fluctuations.
The origin of pseudogap in high-
T
c
superconductors remains a big puzzle. Here, the authors report numerical evidence of pseudogap behavior employing Quantum Monte Carlo algorithm emerging from pairing fluctuations in a quantum-critical non-Fermi liquid, similar to the pseudogap phase observed in cuprate superconductors. |
---|---|
ISSN: | 2041-1723 2041-1723 |
DOI: | 10.1038/s41467-022-30302-x |