Can Satellite and Atmospheric Reanalysis Products Capture Compound Moist Heat Stress-Floods?
Satellite-retrieved and model-based reanalysis precipitation products with high resolution have received increasing attention in recent decades. Their hydrological performance has been widely evaluated. However, whether they can be applied in characterizing the novel category of extreme events, such...
Gespeichert in:
Veröffentlicht in: | Remote sensing (Basel, Switzerland) Switzerland), 2022-09, Vol.14 (18), p.4611 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Satellite-retrieved and model-based reanalysis precipitation products with high resolution have received increasing attention in recent decades. Their hydrological performance has been widely evaluated. However, whether they can be applied in characterizing the novel category of extreme events, such as compound moist heat-flood (CMHF) events, has not been fully investigated to date. The CMHF refers to the rapid transition from moist heat stress to devastating floods and has occurred increasingly frequently under the current warming climate. This study focuses on the applicability of the Integrated Multi-satellite Retrievals for Global Precipitation Measurement (IMERG) and the fifth generation of European Reanalysis (ERA5-Land) in simulating CMHF events over 120 catchments in China. Firstly, the precipitation accuracy of IMERG and ERA5-Land products is appraised for each catchment, using the gridded in situ meteorological dataset (CN05.1) as a baseline. Then, the ability of IMERG and ERA5-Land datasets in simulating the fraction, magnitude, and decade change of floods and CMHFs is comprehensively evaluated by forcing the XAJ and GR4J hydrological models. The results show that: (a) the IMERG and ERA5-Land perform similarly in terms of precipitation occurrences and intensity; (b) the IMERG yields discernably better performance than the ERA5-Land in streamflow simulation, with 71.7% and 50.8% of catchments showing the Kling–Gupta efficiency (KGE) higher than 0.5, respectively; (c) both datasets can roughly capture the frequency, magnitude, and their changes of floods and CMHFs in recent decades, with the IMERG exhibiting more satisfactory accuracy. Our results indicate that satellite remote sensing and atmospheric reanalysis precipitation can not only simulate individual hydrological extremes in most regions, but monitor compound events such as CMHF episodes, and especially, the IMERG satellite can yield better performance than the ERA5-Land reanalysis. |
---|---|
ISSN: | 2072-4292 2072-4292 |
DOI: | 10.3390/rs14184611 |