ROAD REGION DETECTION IN URBAN AREAS COMBINING HIGH-RESOLUTION RGB IMAGE AND LASER SCANNING DATA IN A CLASSIFICATION FRAMEWORK

This paper addresses the problem of road region detection in urban areas using an image classification approach. In order to minimize the spectral superposition of the road (asphalt) class with other classes, the Artificial Neural Networks (ANN) image classification method was used to classify geome...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International archives of the photogrammetry, remote sensing and spatial information sciences. remote sensing and spatial information sciences., 2013-04, Vol.XL-1/W1, p.53-56
Hauptverfasser: Dal Poz, A. P., Mendes, T. S. G.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper addresses the problem of road region detection in urban areas using an image classification approach. In order to minimize the spectral superposition of the road (asphalt) class with other classes, the Artificial Neural Networks (ANN) image classification method was used to classify geometrically-integrated high-resolution RGB aerial and laser-derived images. The RGB image was combined with different laser data layers and the ANN classification results showed that the radiometric and geometric laser data allows a better detection of road pixel.
ISSN:2194-9034
1682-1750
2194-9034
DOI:10.5194/isprsarchives-XL-1-W1-53-2013