Definition of a novel breast tumor-specific classifier based on secretome analysis

During cancer development, the normal tissue microenvironment is shaped by tumorigenic events. Inflammatory mediators and immune cells play a key role during this process. However, which molecular features most specifically characterize the malignant tissue remains poorly explored. Within our instit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Breast cancer research : BCR 2022-12, Vol.24 (1), p.94-94, Article 94
Hauptverfasser: Sirven, Philémon, Faucheux, Lilith, Grandclaudon, Maximilien, Michea, Paula, Vincent-Salomon, Anne, Mechta-Grigoriou, Fatima, Scholer-Dahirel, Alix, Guillot-Delost, Maude, Soumelis, Vassili
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:During cancer development, the normal tissue microenvironment is shaped by tumorigenic events. Inflammatory mediators and immune cells play a key role during this process. However, which molecular features most specifically characterize the malignant tissue remains poorly explored. Within our institutional tumor microenvironment global analysis (T-MEGA) program, we set a prospective cohort of 422 untreated breast cancer patients. We established a dedicated pipeline to generate supernatants from tumor and juxta-tumor tissue explants and quantify 55 soluble molecules using Luminex or MSD. Those analytes belonged to five molecular families: chemokines, cytokines, growth factors, metalloproteinases, and adipokines. When looking at tissue specificity, our dataset revealed some breast tumor-specific characteristics, as IL-16, as well as some juxta-tumor-specific secreted molecules, as IL-33. Unsupervised clustering analysis identified groups of molecules that were specific to the breast tumor tissue and displayed a similar secretion behavior. We identified a tumor-specific cluster composed of nine molecules that were secreted fourteen times more in the tumor supernatants than the corresponding juxta-tumor supernatants. This cluster contained, among others, CCL17, CCL22, and CXCL9 and TGF-β1, 2, and 3. The systematic comparison of tumor and juxta-tumor secretome data allowed us to mathematically formalize a novel breast cancer signature composed of 14 molecules that segregated tumors from juxta-tumors, with a sensitivity of 96.8% and a specificity of 96%. Our study provides the first breast tumor-specific classifier computed on breast tissue-derived secretome data. Moreover, our T-MEGA cohort dataset is a freely accessible resource to the biomedical community to help advancing scientific knowledge on breast cancer.
ISSN:1465-542X
1465-5411
1465-542X
DOI:10.1186/s13058-022-01590-4