Development of a MEMS Multisensor Chip for Aerodynamic Pressure Measurements

The existing instruments for aerodynamic pressure measurements are usually built around an array of discrete pressure sensors, placed in the same housing together with a few discrete temperature sensors. However, this approach is limiting, especially regarding miniaturization, sensor matching, and t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Engineering proceedings 2023-11, Vol.58 (1), p.52
Hauptverfasser: Žarko Lazić, Milče M. Smiljanić, Dragan Tanasković, Milena Rašljić-Rafajilović, Katarina Cvetanović, Evgenija Milinković, Marko V. Bošković, Stevan Andrić, Predrag Poljak, Miloš Frantlović
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The existing instruments for aerodynamic pressure measurements are usually built around an array of discrete pressure sensors, placed in the same housing together with a few discrete temperature sensors. However, this approach is limiting, especially regarding miniaturization, sensor matching, and thermal coupling. In this work, we intend to overcome these limitations by proposing a novel MEMS multisensor chip, which has a monolithically integrated matrix of four piezoresistive MEMS pressure-sensing elements and two resistive temperature-sensing elements. After finishing the preliminary chip design, we performed computer simulations in order to assess its mechanical behavior when measured pressure is applied. Subsequently, the final chip design was completed, and the first batch was fabricated. The used technological processes included photolithography, thermal oxidation, diffusion, sputtering, micromachining (wet chemical etching), anodic bonding, and wafer dicing.
ISSN:2673-4591
DOI:10.3390/ecsa-10-16071