Performance evaluation and assessment of the corrosion inhibition mechanism of carbon steel in HCl medium by a new hydrazone compound: Insights from experimental, DFT and first-principles DFT simulations
In the present work, a new hydrazone compound, namely N'-[(Z)-(4-chlorophenyl)methylidene]-2-(5-methoxy-2-methyl-1H-indol-3-yl)acetohydrazide, noted HTH, was selected to protect carbon steel against corrosion in 1.0 mol/L HCl. Different chemical, electrochemical, and surface characterization te...
Gespeichert in:
Veröffentlicht in: | Arabian journal of chemistry 2023-06, Vol.16 (6), p.104711, Article 104711 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In the present work, a new hydrazone compound, namely N'-[(Z)-(4-chlorophenyl)methylidene]-2-(5-methoxy-2-methyl-1H-indol-3-yl)acetohydrazide, noted HTH, was selected to protect carbon steel against corrosion in 1.0 mol/L HCl. Different chemical, electrochemical, and surface characterization techniques such as scanning electron microscope coupled with X-ray energy dispersion (SEM/EDX) were used to investigate the corrosion inhibition performance. Electrochemical data showed that the effectiveness of the inhibitor improved with increasing concentration, reaching 98% at the optimal concentration of 10-3 mol/L. The results of potentiodynamic polarization measurements showed that hydrazone acted as a mixed-type inhibitor. The EIS results showed an increase in polarization resistance accompanied by a noticeable decrease in Ceff,dl values. In the temperature range of 303 K-333 K, hydrazone protected carbon steel by 89%, showing high resistance to temperature effect. The analysis of the steel surface by SEM/EDX confirmed that the effectiveness of the hydrazone was attributed to the formation of a protective layer on the surface of the metal. Quantum chemical calculations revealed insights into the chemical reactivity of the tested hydrazone while first-principles density functional theory (DFT) and molecular dynamics (MD) simulation supported the experimental conclusions and showed outstanding adsorption ability of HTH on the Fe(110) surface. First-principles DFT simulations showed that the HTH molecule was more stable in a parallel adsorption mode. |
---|---|
ISSN: | 1878-5352 1878-5379 |
DOI: | 10.1016/j.arabjc.2023.104711 |