Insulation Degradation Analysis Due to Thermo-Mechanical Stress in Deep-Sea Oil-Filled Motors

With the wide application of motors in deep sea exploration, deep-sea motors require a higher power density and a longer lifetime. Motor lifetime mainly depends on the thermo-mechanical stress (TMS) load on its stator insulation. Unlike normal motors, deep-sea motors are usually filled with oil to c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energies (Basel) 2022-05, Vol.15 (11), p.3963
Hauptverfasser: Zhang, Jian, Wang, Rui, Fang, Youtong, Lin, Yuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:With the wide application of motors in deep sea exploration, deep-sea motors require a higher power density and a longer lifetime. Motor lifetime mainly depends on the thermo-mechanical stress (TMS) load on its stator insulation. Unlike normal motors, deep-sea motors are usually filled with oil to compensate for the high pressure generated by seawater, which leads to high additional viscous drag loss. This, combined with the high pressure, will greatly change the TMS distribution and further influence motor insulation lifetime. Thus, the insulation degradation analysis of deep-sea oil-filled (DSOF) motors due to TMS has become important. This paper presents a TMS analytical model of DSOF motor insulation, considering the joint effects of high pressure and motor temperature. The CFD method is adopted to perform motor thermal analysis, considering temperature effects on viscous drag loss. The FEA method is adopted for thermo-mechanical analysis and to verify the analytical model accuracy. Rainflow counting and the Miner fatigue method are adopted to evaluate motor lifetime. Results show that compared with motors working in normal environments, TMS on DSOF motor insulation can be reduced by up to 59.5% due to high pressure and the insulation lifetime can be increased by up to 16.02%. Therefore, this research can provide references for high power density DSOF motor design.
ISSN:1996-1073
1996-1073
DOI:10.3390/en15113963