Therapeutic Switching of Rafoxanide: a New Approach To Fighting Drug-Resistant Bacteria and Fungi

Control and management of life-threatening bacterial and fungal infections are a global health challenge. Despite advances in antimicrobial therapies, treatment failures for resistant bacterial and fungal infections continue to increase. We aimed to repurpose the anthelmintic drug rafoxanide for use...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Microbiology spectrum 2023-08, Vol.11 (4), p.e0267922-e0267922
Hauptverfasser: Bendary, Mahmoud M, Abd El-Hamid, Marwa I, Abousaty, Amira I, Elmanakhly, Arwa R, Alshareef, Walaa A, Mosbah, Rasha A, Alhomrani, Majid, Ghoneim, Mohammed M, Elkelish, Amr, Hashim, Nada, Alamri, Abdulhakeem S, Al-Harthi, Helal F, Safwat, Nesreen A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Control and management of life-threatening bacterial and fungal infections are a global health challenge. Despite advances in antimicrobial therapies, treatment failures for resistant bacterial and fungal infections continue to increase. We aimed to repurpose the anthelmintic drug rafoxanide for use with existing therapeutic drugs to increase the possibility of better managing infection and decrease treatment failures. For this purpose, we evaluated the antibacterial and antifungal potential of rafoxanide. Notably, 70% (70/100) of bacterial isolates showed multidrug resistance (MDR) patterns, with higher prevalence among human isolates (73.5% [50/68]) than animal ones (62.5% [20/32]). Moreover, 22 fungal isolates (88%) were MDR and were more prevalent among animal (88.9%) than human (87.5%) sources. We observed alarming MDR patterns among bacterial isolates, i.e., Klebsiella pneumoniae (75% [30/40; 8 animal and 22 human]) and Escherichia coli (66% [40/60; 12 animal and 28 human]), and fungal isolates, i.e., Candida albicans (86.7% [13/15; 4 animal and 9 human]) and Aspergillus fumigatus (90% [9/10; 4 animal and 5 human]), that were resistant to at least one agent in three or more different antimicrobial classes. Rafoxanide had antibacterial and antifungal activities, with minimal inhibitory concentration (MICs) ranging from 2 to 128 μg/mL. Rafoxanide at sub-MICs downregulated the mRNA expression of resistance genes, including E. coli and K. pneumoniae , , , , and , C. albicans , and A. fumigatus . We noted the improvement in the activity of β-lactam and antifungal drugs upon combination with rafoxanide. This was apparent in the reduction in the MICs of cefotaxime and fluconazole when these drugs were combined with sub-MIC levels of rafoxanide. There was obvious synergism between rafoxanide and cefotaxime against all E. coli and K. pneumoniae isolates (fractional inhibitory concentration index [FICI] values ≤ 0.5). Accordingly, there was a shift in the patterns of resistance of 16.7% of E. coli and 22.5% of K. pneumoniae isolates to cefotaxime and those of 63.2% of C. albicans and A. fumigatus isolates to fluconazole when the isolates were treated with sub-MICs of rafoxanide. These results were confirmed by and mouse protection assays. Based on the study, one possible explanation for how rafoxanide reduced bacterial resistance is through its inhibitory effects on bacterial and fungal histidine kinase enzymes. In short, rafoxanide exhibited promising results
ISSN:2165-0497
2165-0497
DOI:10.1128/spectrum.02679-22