Application and effect analysis of renewable energy in a small standalone automatic observation system deployed in the polar regions
Considering the difficulty of power supply for automatic observation equipment in the polar regions, this paper introduced a small standalone renewable energy system with wind–solar co-generation as the energy supply scheme. Mathematical models were given, including solar photovoltaic panels, wind t...
Gespeichert in:
Veröffentlicht in: | AIP advances 2022-12, Vol.12 (12), p.125218-125218-15 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Considering the difficulty of power supply for automatic observation equipment in the polar regions, this paper introduced a small standalone renewable energy system with wind–solar co-generation as the energy supply scheme. Mathematical models were given, including solar photovoltaic panels, wind turbines, solar irradiance, wind energy density, and renewable energy assessment. ERA-Interim atmospheric reanalysis data were used to evaluate solar energy resources, and the synergistic effect of wind–solar resources on renewable energy was also analyzed and discussed. The system composition of the small standalone renewable energy system was proposed in this study. This system deployed near Zhongshan Station was taken as the object of investigation to analyze the operation performance of each component of the system in different months, and the technical feasibility of the system has also been verified. The results showed that the wind–solar resources in the polar regions had a synergistic effect, which can provide an effective and feasible scheme for the power supply of automatic observation equipment. Through research and analysis, it was found that each component of the renewable energy system, including photovoltaic panels, wind turbines, and batteries, could meet the long-term power supply requirements of automatic observation regardless of the polar periods, polar day or polar night. This paper can not only provide theoretical and data support for the application of small independent renewable energy systems in the polar regions but also provide feasible solutions for clean energy supply of the systems and equipment for independent observation stations deployed in uninhabited islands and alpine regions. |
---|---|
ISSN: | 2158-3226 2158-3226 |
DOI: | 10.1063/5.0128256 |