RNA Detection Based on Graphene Field-Effect Transistor Biosensor

Graphene has attracted much attention in biosensing applications due to its unique properties. In this paper, the monolayer graphene was grown by chemical vapor deposition (CVD) method. Using the graphene as the electric channel, we have fabricated a graphene field-effect transistor (G-FET) biosenso...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in Condensed Matter Physics 2018-01, Vol.2018 (2018), p.1-6
Hauptverfasser: Wang, Jihua, Yu, Ziheng, Liu, Huilan, Li, Zhenhua, Wang, Xiaoxin, Zhang, Junye, Xu, Shicai, Tian, Meng, Song, Ruihong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Graphene has attracted much attention in biosensing applications due to its unique properties. In this paper, the monolayer graphene was grown by chemical vapor deposition (CVD) method. Using the graphene as the electric channel, we have fabricated a graphene field-effect transistor (G-FET) biosensor that can be used for label-free detection of RNA. Compared with conventional method, the G-FET RNA biosensor can be run in low cost, be time-saving, and be miniaturized for RNA measurement. The sensors show high performance and achieve the RNA detection sensitivity as low as 0.1 fM, which is two orders of magnitude lower than the previously reports. Moreover, the G-FET biosensor can readily distinguish target RNA from noncomplementary RNA, showing high selectivity for RNA detection. The developed G-FET RNA biosensor with high sensitivity, fast analysis speed, and simple operation may provide a new feasible direction for RNA research and biosensing.
ISSN:1687-8108
1687-8124
DOI:10.1155/2018/8146765