Phytic acid-metal ion chelate coated layered clay and its enhancement and antibacterial effect in poly (ε-caprolactone)

Abstract Based on the excellent chelating ability of phytic acid (PA), Ag+, Cu2+, Fe3+, and Zn2+, were used to chelate with PA, and deposited on the surface of layered double hydroxides (LDHs) to form core-shell structure, so as to improve the interfacial compatibility between layered clay and polym...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cai liao gong cheng = Journal of materials engineering 2021-02, Vol.49 (2), p.127-135
Hauptverfasser: Mao, Long, Liu, Xiao-Chao, Xie, Bin, Wu, Hui-Qing, Liu, Yue-Jun
Format: Artikel
Sprache:chi
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract Based on the excellent chelating ability of phytic acid (PA), Ag+, Cu2+, Fe3+, and Zn2+, were used to chelate with PA, and deposited on the surface of layered double hydroxides (LDHs) to form core-shell structure, so as to improve the interfacial compatibility between layered clay and polymer matrix. Surface coated LDHs (LDHs@PA-M) loaded with different metal ions were prepared. The micromorphology of LDHs@PA-M loaded with different metal ions was studied and applied in the strengthening modification of poly(ε-caprolactone) (PCL). The results show that PA can form stable and uniform nano-coatings with Ag+ and Cu2+on the surface of LDHs. With the excellent antibacterial activity of Ag+ and Cu2+, the antibacterial rates of LDHs@PA-Ag+ and LDHs@PA-Cu2+ against Escherichia coli (E.coli) both exceed 99.99%. Compared with pure PCL, the tensile strength and elongation at break of LDHs@PA-Cu2+/PCL nanocomposites (mass fraction of LDHs@PA-Cu2+ is 1%) increase by 30.7% and 33.3%, reaching 40.9 MPa and 816%, re
ISSN:1001-4381
1001-4381
DOI:10.11868/j.issn.1001-4381.2019.000750