Global changes of the RNA-bound proteome during the maternal-to-zygotic transition in Drosophila
The maternal-to-zygotic transition (MZT) is a process that occurs in animal embryos at the earliest developmental stages, during which maternally deposited mRNAs and other molecules are degraded and replaced by products of the zygotic genome. The zygotic genome is not activated immediately upon fert...
Gespeichert in:
Veröffentlicht in: | Nature communications 2016-07, Vol.7 (1), p.12128-12128, Article 12128 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The maternal-to-zygotic transition (MZT) is a process that occurs in animal embryos at the earliest developmental stages, during which maternally deposited mRNAs and other molecules are degraded and replaced by products of the zygotic genome. The zygotic genome is not activated immediately upon fertilization, and in the pre-MZT embryo post-transcriptional control by RNA-binding proteins (RBPs) orchestrates the first steps of development. To identify relevant
Drosophila
RBPs organism-wide, we refined the RNA interactome capture method for comparative analysis of the pre- and post-MZT embryos. We determine 523 proteins as high-confidence RBPs, half of which were not previously reported to bind RNA. Comparison of the RNA interactomes of pre- and post-MZT embryos reveals high dynamicity of the RNA-bound proteome during early development, and suggests active regulation of RNA binding of some RBPs. This resource provides unprecedented insight into the system of RBPs that govern the earliest steps of
Drosophila
development.
Early development is controlled by maternally deposited mRNAs and the RNA-binding proteins (RBPs) that regulate them. Here the authors describe the identification of a large number of RBPs bound to polyadenylated RNAs in
Drosophila
embryos before and after the maternal-to-zygotic transition, revealing changes in RBPs activity during development. |
---|---|
ISSN: | 2041-1723 2041-1723 |
DOI: | 10.1038/ncomms12128 |