Physicochemical Characterization of Thermally Processed Goose Bone Ash for Bone Regeneration

Goose bone is traditionally applied for many ailments including bone fractures. Goose bone that consists of calcium phosphate plays a major role in bone regeneration. In this study, the production of goose bone ash (GBA) was translated from a traditional process into one of a laboratory scale via th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of functional biomaterials 2023-06, Vol.14 (7), p.351
Hauptverfasser: Abdul Rahman, Fatimah Suhaily, Abdullah, Abdul Manaf, Radhi, Asanah, Shahidan, Wan Nazatul Shima, Abdullah, Johari Yap
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Goose bone is traditionally applied for many ailments including bone fractures. Goose bone that consists of calcium phosphate plays a major role in bone regeneration. In this study, the production of goose bone ash (GBA) was translated from a traditional process into one of a laboratory scale via thermal and mechanical methods. The GBA was thermally processed via calcination at 300 °C and 900 °C. The differences in physicochemical properties between studied GBA (SGBA) and commercial GBA (CGBA) were elucidated via Fourier transform infrared (FT-IR), X-ray fluorescence (XRF), X-ray diffraction (XRD) and electron diffraction X-Ray (EDX). The morphological properties of SGBA and CGBA were characterized using field emission scanning electron microscopy (FESEM) in which nano-sized particles were detected. The results showed that the SGBA of 300 °C had comparable physicochemical properties to those of CGBA. A high processing temperature was associated with decreasing organic compounds and increasing crystallinity. The finding from EDX suggests that sintering at 900 °C (SGBA 900) demonstrated the presence of hydroxyapatite in the mineralogical phase and had a Ca/P atomic ratio of 1.64 which is comparable to the ideal stoichiometric ratio of 1.67. Findings from this study could be used for the further exploration of GBA as a potential material for bone regeneration via the elucidation of their biological properties in the next experimental setting.
ISSN:2079-4983
2079-4983
DOI:10.3390/jfb14070351