Estimating the potential yield and ETc of winter wheat across Huang-Huai-Hai Plain in the future with the modified DSSAT model

The DSSAT model, integrated the calibrated Hargreaves ET model and dynamic crop coefficient, was run with the generated weather data by SDSM4.2 and CanESM2 to predict the potential yield and crop water requirement (ET C ) of winter wheat in the Huang-Huai-Hai Plain in China under RCP4.5 and RCP8.5 s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2018-10, Vol.8 (1), p.1-12, Article 15370
Hauptverfasser: Tang, Xiaopei, Song, Ni, Chen, Zhifang, Wang, Jinglei, He, Jianqiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The DSSAT model, integrated the calibrated Hargreaves ET model and dynamic crop coefficient, was run with the generated weather data by SDSM4.2 and CanESM2 to predict the potential yield and crop water requirement (ET C ) of winter wheat in the Huang-Huai-Hai Plain in China under RCP4.5 and RCP8.5 scenarios. The results showed that the spatial distribution of potential yield in the future under RCP4.5 and RCP8.5 were similar, characterized by an increasing trend from the northwest inland to the southeast coast. The spatial distribution of ET C decreased gradually from the Shandong Peninsula to the surrounding area, and the minimum ET C was observed in the southern part of Huang-Huai-Hai Plain. The potential yield, ET C, and effective precipitation during winter wheat growing seasons might increase in the future under RCP4.5, while irrigation water requirements (IWR) would decrease. Under RCP8.5, the effective precipitation during the wheat growing seasons decreased first and then increased. However, the potential yield, ET C , and IWR of winter wheat increased first and then decreased. This study can provide some scientific evidence to mitigate the negative effects of climate change on agricultural production and water use in the Huang-Huai-Hai Plain.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-018-32980-4