Strong laws for weighted sums of random variables satisfying generalized Rosenthal type inequalities
Let 1 ≤ p < 2 and 0 < α , β < ∞ with 1 / p = 1 / α + 1 / β . Let { X n , n ≥ 1 } be a sequence of random variables satisfying a generalized Rosenthal type inequality and stochastically dominated by a random variable X with E | X | β < ∞ . Let { a n k , 1 ≤ k ≤ n , n ≥ 1 } be an array of...
Gespeichert in:
Veröffentlicht in: | Journal of inequalities and applications 2020-02, Vol.2020 (1), p.1-8, Article 43 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
1
≤
p
<
2
and
0
<
α
,
β
<
∞
with
1
/
p
=
1
/
α
+
1
/
β
. Let
{
X
n
,
n
≥
1
}
be a sequence of random variables satisfying a generalized Rosenthal type inequality and stochastically dominated by a random variable
X
with
E
|
X
|
β
<
∞
. Let
{
a
n
k
,
1
≤
k
≤
n
,
n
≥
1
}
be an array of constants satisfying
∑
k
=
1
n
|
a
n
k
|
α
=
O
(
n
)
. Marcinkiewicz–Zygmund type strong laws for weighted sums of the random variables are established. Our results generalize or improve the corresponding ones of Wu (J. Inequal. Appl. 2010:383805,
2010
), Huang et al. (J. Math. Inequal. 8:465–473,
2014
), and Wu et al. (Test 27:379–406,
2018
). |
---|---|
ISSN: | 1029-242X 1025-5834 1029-242X |
DOI: | 10.1186/s13660-020-02311-1 |