Fejér-Type Inequalities for Some Classes of Differentiable Functions

We let υ be a convex function on an interval [ι1,ι2]⊂R. If ζ∈C([ι1,ι2]), ζ≥0 and ζ is symmetric with respect to ι1+ι22, then υ12∑j=12ιj∫ι1ι2ζ(s)ds≤∫ι1ι2υ(s)ζ(s)ds≤12∑j=12υ(ιj)∫ι1ι2ζ(s)ds. The above estimates were obtained by Fejér in 1906 as a generalization of the Hermite–Hadamard inequality (the a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics (Basel) 2023-09, Vol.11 (17), p.3764
1. Verfasser: Samet, Bessem
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We let υ be a convex function on an interval [ι1,ι2]⊂R. If ζ∈C([ι1,ι2]), ζ≥0 and ζ is symmetric with respect to ι1+ι22, then υ12∑j=12ιj∫ι1ι2ζ(s)ds≤∫ι1ι2υ(s)ζ(s)ds≤12∑j=12υ(ιj)∫ι1ι2ζ(s)ds. The above estimates were obtained by Fejér in 1906 as a generalization of the Hermite–Hadamard inequality (the above inequality with ζ≡1). This work is focused on the study of right-side Fejér-type inequalities in one- and two-dimensional cases for new classes of differentiable functions υ. In the one-dimensional case, the obtained results hold without any symmetry condition imposed on the weight function ζ. In the two-dimensional case, the right side of Fejer’s inequality is extended to the class of subharmonic functions υ on a disk.
ISSN:2227-7390
2227-7390
DOI:10.3390/math11173764