Fejér-Type Inequalities for Some Classes of Differentiable Functions
We let υ be a convex function on an interval [ι1,ι2]⊂R. If ζ∈C([ι1,ι2]), ζ≥0 and ζ is symmetric with respect to ι1+ι22, then υ12∑j=12ιj∫ι1ι2ζ(s)ds≤∫ι1ι2υ(s)ζ(s)ds≤12∑j=12υ(ιj)∫ι1ι2ζ(s)ds. The above estimates were obtained by Fejér in 1906 as a generalization of the Hermite–Hadamard inequality (the a...
Gespeichert in:
Veröffentlicht in: | Mathematics (Basel) 2023-09, Vol.11 (17), p.3764 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We let υ be a convex function on an interval [ι1,ι2]⊂R. If ζ∈C([ι1,ι2]), ζ≥0 and ζ is symmetric with respect to ι1+ι22, then υ12∑j=12ιj∫ι1ι2ζ(s)ds≤∫ι1ι2υ(s)ζ(s)ds≤12∑j=12υ(ιj)∫ι1ι2ζ(s)ds. The above estimates were obtained by Fejér in 1906 as a generalization of the Hermite–Hadamard inequality (the above inequality with ζ≡1). This work is focused on the study of right-side Fejér-type inequalities in one- and two-dimensional cases for new classes of differentiable functions υ. In the one-dimensional case, the obtained results hold without any symmetry condition imposed on the weight function ζ. In the two-dimensional case, the right side of Fejer’s inequality is extended to the class of subharmonic functions υ on a disk. |
---|---|
ISSN: | 2227-7390 2227-7390 |
DOI: | 10.3390/math11173764 |