Missing value imputation in multi-environment trials: Reconsidering the Krzanowski method

We propose a new methodology for multiple imputation when faced with missing data in multi-environmental trials with genotype-by-environment interaction, based on the imputation system developed by Krzanowski that uses the singular value decomposition (SVD) of a matrix. Several different iterative v...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Crop breeding and applied biotechnology 2016-06, Vol.16 (2), p.77-85
Hauptverfasser: Arciniegas-Alarcón, Sergio, García-Peña, Marisol, Krzanowski, Wojtek
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose a new methodology for multiple imputation when faced with missing data in multi-environmental trials with genotype-by-environment interaction, based on the imputation system developed by Krzanowski that uses the singular value decomposition (SVD) of a matrix. Several different iterative variants are described; differential weights can also be included in each variant to represent the influence of different components of SVD in the imputation process. The methods are compared through a simulation study based on three real data matrices that have values deleted randomly at different percentages, using as measure of overall accuracy a combination of the variance between imputations and their mean square deviations relative to the deleted values. The best results are shown by two of the iterative schemes that use weights belonging to the interval [0.75, 1]. These schemes provide imputations that have higher quality when compared with other multiple imputation methods based on the Krzanowski method.
ISSN:1984-7033
1518-7853
1984-7033
DOI:10.1590/1984-70332016v16n2a13