Joint Study of Impingement Combustion Simulation and Diesel Visualization Experiment of Variable Injection Pressure in Constant Volume Vessel

In this paper, the visualization experiments of spray, ignition, and combustion of diesel under variable injection pressure (from 90 to 130 MPa) were studied by using a constant volume vessel and impinging combustion plate system. With the development of the down-sizing of diesel engines, the wall i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energies (Basel) 2020-12, Vol.13 (23), p.6210
Hauptverfasser: Tang, Yuanzhi, Lou, Diming, Wang, Chengguan, Tan, Piqiang, Hu, Zhiyuan, Zhang, Yunhua, Fang, Liang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, the visualization experiments of spray, ignition, and combustion of diesel under variable injection pressure (from 90 to 130 MPa) were studied by using a constant volume vessel and impinging combustion plate system. With the development of the down-sizing of diesel engines, the wall impinging combustion without liquid spray collision will be the research focus in the diesel engine combustion process. The flame natural luminosity in the experiment represents the soot formation of diesel combustion. Besides, the detailed information of diesel spray mixing combustion was obtained by using the CFD (Computational Fluid Dynamics) simulation of alternative fuels in CONVERGE™. The specific conclusions are as follows. The high velocity of the spray under the higher injection pressure could reduce the low-mixing area near the impinging wall by entraining more air. Under higher injection pressure in simulation, the gas diffused more extensively, and more heat was released after combustion. Therefore, a large amount of soot formed in the early stage of combustion and then oxidized in high-temperature regions, which agreed with the conclusions in the experiments. Under the influence of the superposition of image pixels of the flame, the change of soot generation with injection pressure is smaller than the actual value, so the visualization experiment can be used as the basis of combustion prediction.
ISSN:1996-1073
1996-1073
DOI:10.3390/en13236210