Lipid-protein interactions modulate the conformational equilibrium of a potassium channel

Cell membranes actively participate in the regulation of protein structure and function. In this work, we conduct molecular dynamics simulations to investigate how different membrane environments affect protein structure and function in the case of MthK, a potassium channel. We observe different ion...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2020-05, Vol.11 (1), p.2162-2162, Article 2162
Hauptverfasser: Gu, Ruo-Xu, de Groot, Bert L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cell membranes actively participate in the regulation of protein structure and function. In this work, we conduct molecular dynamics simulations to investigate how different membrane environments affect protein structure and function in the case of MthK, a potassium channel. We observe different ion permeation rates of MthK in membranes with different properties, and ascribe them to a shift of the conformational equilibrium between two states of the channel that differ according to whether a transmembrane helix has a kink. Further investigations indicate that two key residues in the kink region mediate a crosstalk between two gates at the selectivity filter and the central cavity, respectively. Opening of one gate eventually leads to closure of the other. Our simulations provide an atomistic model of how lipid-protein interactions affect the conformational equilibrium of a membrane protein. The gating mechanism revealed for MthK may also apply to other potassium channels. Potassium (K+) channels, such as MthK, are essentional for many biological processes, but how lipid-protein interactions regulate ion permeation of K+ channels remained unclear. Here authors conducted molecular dynamics simulations of MthK and observed different ion permeation rates of MthK in membranes with different properties.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-020-15741-8