Edge magic total labeling of lexicographic product C4(2r+1) o ~K2 cycle with chords, unions of paths, and unions of cycles and paths
An edge magic total (EMT) labeling of a graph G = (V, E) is a bijection from the set of vertices and edges to a set of numbers defined by λ : V ∪ E → {1, 2, ..., ∣V∣ + ∣E∣} with the property that for every xy ∈ E , the weight of xy equals to a constant k , that is, λ(x) + λ(y) + λ(xy) = k for some i...
Gespeichert in:
Veröffentlicht in: | Indonesian journal of combinatorics 2018-12, Vol.2 (2), p.111-122 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | An edge magic total (EMT) labeling of a graph G = (V, E) is a bijection from the set of vertices and edges to a set of numbers defined by λ : V ∪ E → {1, 2, ..., ∣V∣ + ∣E∣} with the property that for every xy ∈ E , the weight of xy equals to a constant k , that is, λ(x) + λ(y) + λ(xy) = k for some integer k . In this paper given the construction of an EMT labeling for certain lexicographic product $C_{4(2r+1)}\circ \overline{K_2}$ , cycle with chords [c]tCn , unions of paths mPn , and unions of cycles and paths m(Cn1(2r + 1) ∪ (2r + 1)Pn2) . |
---|---|
ISSN: | 2541-2205 2541-2205 |
DOI: | 10.19184/ijc.2018.2.2.6 |