Recent Insights on Catalyst Layers for Anion Exchange Membrane Fuel Cells
Anion exchange membrane fuel cells (AEMFCs) performance have significantly improved in the last decade (>1 W cm−2), and is now comparable with that of proton exchange membrane fuel cells (PEMFCs). At high current densities, issues in the catalyst layer (CL, composed of catalyst and ionomer), like...
Gespeichert in:
Veröffentlicht in: | Advanced science 2021-08, Vol.8 (15), p.e2100284-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Anion exchange membrane fuel cells (AEMFCs) performance have significantly improved in the last decade (>1 W cm−2), and is now comparable with that of proton exchange membrane fuel cells (PEMFCs). At high current densities, issues in the catalyst layer (CL, composed of catalyst and ionomer), like oxygen transfer, water balance, and microstructural evolution, play important roles in the performance. In addition, CLs for AEMFCs have different requirements than for PEMFCs, such as chemical/physical stability, reaction mechanism, and mass transfer, because of different conductive media and pH environment. The anion exchange ionomer (AEI), which is the soluble or dispersed analogue of the anion exchange membrane (AEM), is required for hydroxide transport in the CL and is normally handled separately with the electrocatalyst during the electrode fabrication process. The importance of the AEI–catalyst interface in maximizing the utilization of electrocatalyst and fuel/oxygen transfer process must be carefully investigated. This review briefly covers new concepts in the complex AEMFC catalyst layer, before a detailed discussion on advances in CLs based on the design of AEIs and electrocatalysts. The importance of the structure–function relationship is highlighted with the aim of directing the further development of CLs for high‐performance AEMFC.
Because of the high pH environment in anion exchange membrane fuel cell (AEMFC), the electrochemical reaction and physical processes occurring within the catalyst layer (CL) are complex during fuel cell operation. This review introduces recent progress in materials science and microstructure control of the CL, with the aim of directing the design of high‐performance and high‐stability AEMFC. |
---|---|
ISSN: | 2198-3844 2198-3844 |
DOI: | 10.1002/advs.202100284 |