Modeling Artificial Light Exposure after Vegetation Trimming at a Marine Turtle Nesting Beach
Light pollution caused by poorly directed artificial lighting has increased globally in recent years. Artificial lights visible along marine turtle nesting beaches can disrupt natural brightness cues used by hatchling turtles to orient correctly to the ocean for their offshore migrations. Natural ba...
Gespeichert in:
Veröffentlicht in: | Remote sensing (Basel, Switzerland) Switzerland), 2022-06, Vol.14 (11), p.2702 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Light pollution caused by poorly directed artificial lighting has increased globally in recent years. Artificial lights visible along marine turtle nesting beaches can disrupt natural brightness cues used by hatchling turtles to orient correctly to the ocean for their offshore migrations. Natural barriers, such as tall dunes and dense vegetation, that block coastal and inland lights from the beach may reduce this disruption. However, coastal areas are often managed toward human values, including the trimming of vegetation to improve ocean views. We used viewshed models to determine how reducing the dune vegetation height (specifically that of seagrape, Cocoloba uvifera) might increase the amount of artificial light from upland buildings that reaches a marine turtle nesting beach in Southeast Florida. We incorporated three data sets (LiDAR data, turtle nest locations, and field surveys of artificial lights) into a geographic information system to create viewsheds of lighting from buildings across 21 vegetation profiles. In 2018, when most seagrape patches had been trimmed to |
---|---|
ISSN: | 2072-4292 2072-4292 |
DOI: | 10.3390/rs14112702 |