Capacity Bounds and High-SNR Capacity of the Additive Exponential Noise Channel With Additive Exponential Interference

Communication in the presence of a priori known interference at the encoder has gained great interest because of its many practical applications. In this paper, additive exponential noise channel with additive exponential interference (AENC-AEI) known non-causally at the transmitter is introduced as...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Iranian journal of electrical & electronic engineering 2020-06, Vol.16 (2), p.137-145
Hauptverfasser: M. Monemizadeh, H. Fehri, Gh. Abed Hodtani, S. Hajizadeh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Communication in the presence of a priori known interference at the encoder has gained great interest because of its many practical applications. In this paper, additive exponential noise channel with additive exponential interference (AENC-AEI) known non-causally at the transmitter is introduced as a new variant of such communication scenarios‎. First, it is shown that the additive Gaussian channel with a priori known interference at the encoder when the transmitter suffers from a fast-varying phase noise can be modeled by the AENC-AEI. Then, capacity bounds for this channel under a non-negativity constraint as well as a mean value constraint on input are derived‎. ‎Finally, it is shown both analytically and numerically that the upper and lower bounds coincide at high signal to noise ratios (SNRs), and therefore‎, ‎the capacity of the AENC-AEI at high SNRs is obtained. Interestingly, this high SNR-capacity has a simple closed-form expression and is independent of the interference mean, analogous to its Gaussian counterpart.
ISSN:1735-2827
2383-3890
DOI:10.22068/IJEEE.16.2.137