Strategi Penanganan Imbalance Class Pada Model Klasifikasi Penerima Kartu Indonesia Pintar Kuliah Berbasis Neural Network Menggunakan Kombinasi SMOTE dan ENN

Keterbatasan kuota penerima program Kartu Indonesia Pintar Kuliah (KIP Kuliah) dari pemerintah mengharuskan Perguruan Tinggi (PT) menyeleksi dengan cermat calon mahasiswa yang berhak menerima program tersebut. Pembentukan model klasifikasi penerima program KIP Kuliah merupakan salah satu cara yang d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Jurnal teknologi informasi dan ilmu komputer (Online) 2023-04, Vol.10 (2), p.457-466
Hauptverfasser: Darojah, Zaqiatud, Susetyoko, Ronny, Ramadijanti, Nana
Format: Artikel
Sprache:ind
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Keterbatasan kuota penerima program Kartu Indonesia Pintar Kuliah (KIP Kuliah) dari pemerintah mengharuskan Perguruan Tinggi (PT) menyeleksi dengan cermat calon mahasiswa yang berhak menerima program tersebut. Pembentukan model klasifikasi penerima program KIP Kuliah merupakan salah satu cara yang dapat membantu PT dalam menyeleksi calon mahasiswa agar tepat sasaran berdasarkan data lampau. Penelitian ini bertujuan untuk membentuk model klasifikasi penerima KIP Kuliah menggunakan Neural Network (NN).  Strategi data processing level digunakan untuk mengatasi ketidakseimbangan data atau imbalance class yang terjadi antara kelas penerima KIP Kuliah sebagai kelas minoritas dan kelas bukan penerima KIP Kuliah sebagai kelas mayoritas. Teknik yang digunakan pada penelitian ini adalah mengkombinaskan metode oversampling Syntetic Minority Oversampling Technique (SMOTE), metode undersampling Edited Nearest Neighbor Rule (ENN),  dan metode undersampling dengan penghapusan langsung pada sampel terpilih. Skema penggabungan dilakukan dengan cara mengelompokkan terlebih dahulu kelas mayoritas menjadi beberapa sub kelas (cluster) menggunakan algoritma k-means. Metode SMOTE dan ENN diterapkan secara bersamaan menggunakan rasio sampling tertentu pada dataset yang berasal dari kelas minoritas dan sub kelas mayoritas yang merupakan tetangga terdekat kelas minoritas tersebut. Metode penghapusan sampel diterapkan pada sub kelas mayoritas yang memiliki jarak yang sangat signifikan dari kelas minoritas. Tujuan dari skema yang diajukan adalah untuk meminimalkan terjadinya pembangkitan false sample pada kelas minoritas dan penghapusan sampel informatif pada kelas mayoritas. Hasil simulasi menunjukkan bahwa kombinasi teknik undersampling dan oversampling dengan skema yang diusulkan mampu meningkatkan kinerja model klasifikasi NN secara signifikan. Model klasifikasi terbaik menghasilkan  nilai accuracy sebesar 93.45%,  TPR sebesar 90,00%, TNR sebesar 93.67%, G-Mean sebesar 91,51%, dan nMCC sebesar 81.25%.  Abstract  The limited quota for recipients of the Kartu Indonesia Pintar Kuliah (KIP Kuliah) program requires the university to select carefully the students who are entitled to receive the program. This study aims to build the classification model for KIP Kuliah recipients using Neural Network (NN) which can be utilized by universities in selecting prospective KIP Kuliah recipients students. To solve the imbalanced KIP Kuliah recipients data, we propose a hybrid sampling technique
ISSN:2355-7699
2528-6579
DOI:10.25126/jtiik.20231026480