Transfer Prediction Method of Bearing Remaining Useful Life Based on Deep Feature Evaluation under Different Working Conditions

In the existing bearing remaining useful life (RUL)-prediction model based on deep learning, the advantages and disadvantages of the extracted features are evaluated by the prediction accuracy; thus, the analytical ability of the features is poor. At the same time, the change of working conditions h...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Switzerland), 2023-10, Vol.23 (19), p.8254
Hauptverfasser: Liu, Yongzhi, Zou, Yisheng, Zhang, Kai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the existing bearing remaining useful life (RUL)-prediction model based on deep learning, the advantages and disadvantages of the extracted features are evaluated by the prediction accuracy; thus, the analytical ability of the features is poor. At the same time, the change of working conditions has a great influence on prediction accuracy. To overcome these limitations, a prediction method of bearing RUL based on feature evaluation and deep transfer learning is proposed. The proposed model can solve the above problems: (1) a method of feature evaluation and selection for bearing life prediction based on trend consistency index was designed. (2) In this study, a domain adversarial transfer model based on feature condition mapping is proposed to overcome the second limitation. Experimental results show that this method is superior to the existing bearing evaluation and prediction methods.
ISSN:1424-8220
1424-8220
DOI:10.3390/s23198254