Born–Infeld black holes in 4D Einstein–Gauss–Bonnet gravity
A novel four-dimensional Einstein-Gauss-Bonnet gravity was formulated by Glavan and Lin (Phys. Rev. Lett. 124:081301, 2020), which is intended to bypass the Lovelock’s theorem and to yield a non-trivial contribution to the four-dimensional gravitational dynamics. However, the validity and consistenc...
Gespeichert in:
Veröffentlicht in: | The European physical journal. C, Particles and fields Particles and fields, 2020-07, Vol.80 (7), p.1-10, Article 662 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A novel four-dimensional Einstein-Gauss-Bonnet gravity was formulated by Glavan and Lin (Phys. Rev. Lett. 124:081301, 2020), which is intended to bypass the Lovelock’s theorem and to yield a non-trivial contribution to the four-dimensional gravitational dynamics. However, the validity and consistency of this theory has been called into question recently. We study a static and spherically symmetric black hole charged by a Born–Infeld electric field in the novel four-dimensional Einstein–Gauss–Bonnet gravity. It is found that the black hole solution still suffers the singularity problem, since particles incident from infinity can reach the singularity. It is also demonstrated that the Born-Infeld charged black hole may be superior to the Maxwell charged black hole to be a charged extension of the Schwarzschild-AdS-like black hole in this new gravitational theory. Some basic thermodynamics of the black hole solution is also analyzed. Besides, we regain the black hole solution in the regularized four-dimensional Einstein–Gauss–Bonnet gravity proposed by Lü and Pang (
arXiv:2003.11552
). |
---|---|
ISSN: | 1434-6044 1434-6052 |
DOI: | 10.1140/epjc/s10052-020-8246-6 |