MSLFuzzer: black-box fuzzing of SOHO router devices via message segment list inference

The popularity of small office and home office routers has brought convenience, but it also caused many security issues due to vulnerabilities. Black-box fuzzing through network protocols to discover vulnerabilities becomes a viable option. The main drawbacks of state-of-the-art black-box fuzzers ca...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cybersecurity 2023-12, Vol.6 (1), p.51-21, Article 51
Hauptverfasser: Cheng, Yixuan, Fan, Wenqing, Huang, Wei, Yang, Jingyu, Yu, Gaoqing, Liu, Wen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The popularity of small office and home office routers has brought convenience, but it also caused many security issues due to vulnerabilities. Black-box fuzzing through network protocols to discover vulnerabilities becomes a viable option. The main drawbacks of state-of-the-art black-box fuzzers can be summarized as follows. First, the feedback process neglects to discover the missing fields in the raw message. Secondly, the guidance of the raw message content in the mutation process is aimless. Finally, the randomized validity of the test case structure can cause most fuzzing tests to end up with an invalid response of the tested device. To address these challenges, we propose a novel black-box fuzzing framework called MSLFuzzer. MSLFuzzer infers the raw message structure according to the response from a tested device and generates a message segment list. Furthermore, MSLFuzzer performs semantic, sequence, and stability analyses on each message segment to enhance the complementation of missing fields in the raw message and guide the mutation process. We construct a dataset of 35 real-world vulnerabilities and evaluate MSLFuzzer. The evaluation results show that MSLFuzzer can find more vulnerabilities and elicit more types of responses from fuzzing targets. Additionally, MSLFuzzer successfully discovered 10 previously unknown vulnerabilities.
ISSN:2523-3246
2523-3246
DOI:10.1186/s42400-023-00186-5