Applying feature selection and machine learning techniques to estimate the biomass higher heating value

The biomass higher heating value (HHV) is an important thermal property that determines the amount of recoverable energy from agriculture byproducts. Precise laboratory measurement or accurate prediction of the HHV is essential for designing biomass conversion equipment. The current study combines f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2023-09, Vol.13 (1), p.16093-16093, Article 16093
Hauptverfasser: Abdollahi, Seyyed Amirreza, Ranjbar, Seyyed Faramarz, Razeghi Jahromi, Dorsa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The biomass higher heating value (HHV) is an important thermal property that determines the amount of recoverable energy from agriculture byproducts. Precise laboratory measurement or accurate prediction of the HHV is essential for designing biomass conversion equipment. The current study combines feature selection scenarios and machine learning tools to establish a general model for estimating biomass HHV. Multiple linear regression and Pearson’s correlation coefficients justified that volatile matter, nitrogen, and oxygen content of biomass samples have a slight effect on the HHV and it is better to ignore them during the HHV modeling. Then, the prediction performance of random forest, multilayer and cascade feedforward neural networks, group method of data handling, and least-squares support vector regressor are compared to determine the intelligent estimator with the highest accuracy toward biomass HHV prediction. The ranking test shows that the multilayer perceptron neural network better predicts the HHV of 532 biomass samples than the other intelligent models. This model presents the outstanding absolute average relative error of 2.75% and 3.12% and regression coefficients of 0.9500 and 0.9418 in the learning and testing stages. The model performance is also superior to a recurrent neural network which was recently developed in the literature using the same databank.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-023-43496-x