A banana transcriptional repressor MaAP2a participates in fruit starch degradation during postharvest ripening

Fruit postharvest ripening is a crucial course for many fruits with significant conversion of biosubstance, which forms an intricate regulatory network. Ethylene facilitates the ripening process in banana with a remarkable change of fruit starch, but the mechanism adjusting the expression of starch...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Frontiers in plant science 2022-11, Vol.13, p.1036719-1036719
Hauptverfasser: Xiao, Yunyi, Li, Ying, Ouyang, Lejun, Yin, Aiguo, Xu, Bo, Zhang, Ling, Chen, Jianye, Liu, Jinfeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Fruit postharvest ripening is a crucial course for many fruits with significant conversion of biosubstance, which forms an intricate regulatory network. Ethylene facilitates the ripening process in banana with a remarkable change of fruit starch, but the mechanism adjusting the expression of starch degradation-related enzyme genes is incompletely discovered. Here, we describe a banana APETALA2 transcription factor (MaAP2a) identified as a transcriptional repressor with its powerful transcriptional inhibitory activity. The transcriptional level of MaAP2a gradually decreased with the transition of banana fruit ripening, suggesting a passive role of MaAP2a in banana fruit ripening. Moreover, MaAP2a is a classic nucleoprotein and encompasses transcriptional repressor domain (EAR, LxLxLx). More specifically, protein–DNA interaction assays found that MaAP2a repressed the expression of 15 starch degradation-related genes comprising MaGWD1 , MaPWD1 , MaSEX4 , MaLSF1 , MaBAM1-MaBAM3 , MaAMY2B / 2C/3A/3C , MaMEX1 / 2 , and MapGlcT2-1/2-2 via binding to the GCC-box or AT-rich motif of their promoters. Overall, these results reveal an original MaAP2a-mediated negative regulatory network involved in banana postharvest starch breakdown, which advances our cognition on banana fruit ripening and offers additional reference values for banana varietal improvement.
ISSN:1664-462X
1664-462X
DOI:10.3389/fpls.2022.1036719