Optimal Operation Strategies into Deregulated Markets for 50 MWe Parabolic Trough Solar Thermal Power Plants with Thermal Storage

The evolution of electric generation systems, according to relevant legislation, allows for the parallel evolution of the installed power capacity of renewable resources with the development of technologies for renewable resources, therefore optimizing the choice of energy mix from renewable resourc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energies (Basel) 2019-03, Vol.12 (5), p.935
Hauptverfasser: Llamas, Jorge, Bullejos, David, Ruiz de Adana, Manuel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The evolution of electric generation systems, according to relevant legislation, allows for the parallel evolution of the installed power capacity of renewable resources with the development of technologies for renewable resources, therefore optimizing the choice of energy mix from renewable resources by prioritizing the implementation of concentrating solar thermal plants. Thanks to their great potential, parabolic trough solar thermal power plants have become the most widely spread type of electricity generation by renewable solar energy. Nonetheless, the operation of the plant is not unique; it must be adapted to the parameters of solar radiation and market behavior for each specific location. This work focuses on the search for the optimal strategies of operation by a mathematical model of a 50 MWe parabolic trough thermal power plant with thermal storage. The analysis of the different ways of operation throughout a whole year, including model verification via a currently operating plant, provides meaningful insights into the electricity generated. Focused to work under non-regulated electricity markets to adjust this type of technology to the European directives, the presented model of optimization allows for the adaptation of the curve of generation to the network demands and market prices, rising the profitability of the power plant. Thus, related to solar resources and market price, the economic benefit derived from the electricity production improves between 5.17% and 7.79%.
ISSN:1996-1073
1996-1073
DOI:10.3390/en12050935