Modeling and Numerical Analysis in 3D of Anisotropic and Nonlinear Mechanical Behavior of Tournemire Argillite under High Temperatures and Dynamic Loading

This work proposes a model that takes into account the anisotropy of material with its inhomogeneity and geometrical and material nonlinearities. According to Newton’s second law, the investigations were carried out on the simultaneous effects of mechanical load and thermal treatment on the Tournemi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:TheScientificWorld 2020, Vol.2020 (2020), p.1-20
Hauptverfasser: Marius, Foguieng Wembe, François, Ngapgue, Luc Leroy, Mambou Ngueyep
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This work proposes a model that takes into account the anisotropy of material with its inhomogeneity and geometrical and material nonlinearities. According to Newton’s second law, the investigations were carried out on the simultaneous effects of mechanical load and thermal treatment on the Tournemire argillite material. The finite difference method was used for the numerical resolution of the problem by the MATLAB 2015a software in order to determine the peak stress and strain of argillite as a function of material nonlinearity and demonstrated the inhomogeneity parameter Ω. The critical temperature from which the material damage was pronounced is 500°C. Indeed, above this temperature, the loss of rigidity of argillite reduced significantly the mechanical performance of this rock. Therefore, after 2.9 min, the stress reduction in X or Y direction was 75.5% with a peak stress value of 2500 MPa, whereas in Z direction, the stress reduction was 74.1% with a peak stress value of 1998 MPa. Meanwhile, knowing that the material inhomogeneity was between 2995 and 3256.010, there was an increase in peak stress of about 75%. However, the influence of the material nonlinearity was almost negligible. Thus, the geometrical nonlinearity allows having the maximal constant strain of about 1.25 in the direction of the applied dynamic mechanical force.
ISSN:2356-6140
1537-744X
1537-744X
DOI:10.1155/2020/2978257