Hyperbolic string vertices
A bstract The string vertices of closed string field theory are subsets of the moduli spaces of punctured Riemann surfaces that satisfy a geometric version of the Batalin-Vilkovisky master equation. We present a homological proof of existence of string vertices and their uniqueness up to canonical t...
Gespeichert in:
Veröffentlicht in: | The journal of high energy physics 2022-02, Vol.2022 (2), p.2-29, Article 2 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A
bstract
The string vertices of closed string field theory are subsets of the moduli spaces of punctured Riemann surfaces that satisfy a geometric version of the Batalin-Vilkovisky master equation. We present a homological proof of existence of string vertices and their uniqueness up to canonical transformations. Using hyperbolic metrics on surfaces with geodesic boundaries we give an exact construction of string vertices as sets of surfaces with systole greater than or equal to
L
with
L ≤
2 arcsinh 1. Intrinsic hyperbolic collars prevent the appearance of short geodesics upon sewing. The surfaces generated by Feynman diagrams are naturally endowed with Thurston metrics: hyperbolic on the vertices and flat on the propagators. For the classical theory the length
L
is arbitrary and, as
L → ∞
hyperbolic vertices become the minimal-area vertices of closed string theory. |
---|---|
ISSN: | 1029-8479 1029-8479 |
DOI: | 10.1007/JHEP02(2022)002 |