Finite-temperature critical behavior of long-range quantum Ising models

We study the phase diagram and critical properties of quantum Ising chains with long-range ferromagnetic interactions decaying in a power-law fashion with exponent \alpha α , in regimes of direct interest for current trapped ion experiments. Using large-scale path integral Monte Carlo simulations, w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SciPost physics 2021-10, Vol.11 (4), p.076, Article 076
Hauptverfasser: Gonzalez Lazo, Eduardo, Heyl, Markus, Dalmonte, Marcello, Angelone, Adriano
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the phase diagram and critical properties of quantum Ising chains with long-range ferromagnetic interactions decaying in a power-law fashion with exponent \alpha α , in regimes of direct interest for current trapped ion experiments. Using large-scale path integral Monte Carlo simulations, we investigate both the ground-state and the nonzero-temperature regimes. We identify the phase boundary of the ferromagnetic phase and obtain accurate estimates for the ferromagnetic-paramagnetic transition temperatures. We further determine the critical exponents of the respective transitions. Our results are in agreement with existing predictions for interaction exponents \alpha 1 up to small deviations in some critical exponents. We also address the elusive regime \alpha < 1 α < 1 , where we find that the universality class of both the ground-state and nonzero-temperature transition is consistent with the mean-field limit at \alpha = 0 α = 0 . Our work not only contributes to the understanding of the equilibrium properties of long-range interacting quantum Ising models, but can also be important for addressing fundamental dynamical aspects, such as issues concerning the open question of thermalization in such models.
ISSN:2542-4653
2542-4653
DOI:10.21468/SciPostPhys.11.4.076