Bio-Stimulant for Improving Simmondsia chinensis Secondary Metabolite Production, as Well as Antimicrobial Activity and Wound Healing Abilities

Simmondsia chinensis is a dioecious, long-lived perennial shrub. Its leaves contain several antioxidant flavonoids that have numerous pharmacological effects. Various strategies have been explored to propagate jojoba with enhanced pharmacological values. This research evaluates the bio-stimulatory i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plants (Basel) 2023-09, Vol.12 (18), p.3311
Hauptverfasser: El Sherif, Fadia, AlDayel, Munirah, Ismail, Mohammad Bani, Alrajeh, Hind Salih, Younis, Nancy S., Khattab, Salah
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Simmondsia chinensis is a dioecious, long-lived perennial shrub. Its leaves contain several antioxidant flavonoids that have numerous pharmacological effects. Various strategies have been explored to propagate jojoba with enhanced pharmacological values. This research evaluates the bio-stimulatory impacts of He–Ne laser seed irradiation on seed germination, plantlet growth, and alteration of the composition and bioactivities of phytochemicals in jojoba plants. Jojoba seeds were irradiated for 5, 10, and 15 min before in vitro germination. Germination, growth, and multiplication parameters were recorded during germination, multiple-shoot induction, and rooting stages. The wound healing and antimicrobial activities of methanolic extracts from plant lines obtained from the non-irradiated (control) and 10 min irradiated seeds were compared by excision wound model in Wistar male rats and zone of inhibition assay. Our study revealed that laser irradiation increased seed germination, with the highest percentage observed in seeds irradiated for 10 min. Plant lines from the 10 min irradiated seeds produced more explants with higher explant heights and numbers of leaves, more roots, and higher photosynthetic pigment contents than those of control and other laser testings. By comparing plant extracts from the control and 10 min treatments, we observed that extracts from the 10 min treatment exhibited higher percentages of wound contraction and shorter epithelialization periods. In addition, these extracts also resulted in higher levels of angiogenesis elements (VEGF, TGF-β1, and HIF-1α) and reduced the inflammation regulators (IL-1β, IL-6, TNF-α, and NFκB) in the experimental rats. In concordance, extracts from the 10 min treatment also explained raised antibacterial activities towards Staphylococcus aureus and Escherichia coli. Our findings show that pre-sowing seed treatment with a He–Ne laser (632.8 nm) could be a good technique for stimulating S. chinensis plant growth and increasing the impact compound levels and biological activities.
ISSN:2223-7747
2223-7747
DOI:10.3390/plants12183311