Smart Count System Based on Object Detection Using Deep Learning

Object counting is an indispensable task in manufacturing and management. Recently, the development of image-processing techniques and deep learning object detection has achieved excellent performance in object-counting tasks. Accordingly, we propose a novel small-size smart counting system composed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Remote sensing (Basel, Switzerland) Switzerland), 2022-08, Vol.14 (15), p.3761
Hauptverfasser: Moon, Jiwon, Lim, Sangkyu, Lee, Hakjun, Yu, Seungbum, Lee, Ki-Baek
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Object counting is an indispensable task in manufacturing and management. Recently, the development of image-processing techniques and deep learning object detection has achieved excellent performance in object-counting tasks. Accordingly, we propose a novel small-size smart counting system composed of a low-cost hardware device and a cloud-based object-counting software server to implement an accurate counting function and overcome the trade-off presented by the computing power of local hardware. The cloud-based object-counting software consists of a model adapted to the object-counting task through a novel DBC-NMS (our own technique) and hyperparameter tuning of deep-learning-based object-detection methods. With the power of DBC-NMS and hyperparameter tuning, the performance of the cloud-based object-counting software is competitive over commonly used public datasets (CARPK and SKU110K) and our custom dataset of small pills. Our cloud-based object-counting software achieves an mean absolute error (MAE) of 1.03 and a root mean squared error (RMSE) of 1.20 on the Pill dataset. These results demonstrate that the proposed smart counting system accurately detects and counts densely distributed object scenes. In addition, the proposed system shows a reasonable and efficient cost–performance ratio by converging low-cost hardware and cloud-based software.
ISSN:2072-4292
2072-4292
DOI:10.3390/rs14153761