Active control of polariton-enabled long-range energy transfer
Optical control is achieved on the excited state energy transfer between spatially separated donor and acceptor molecules, both coupled to the same optical mode of a cavity. The energy transfer occurs through the formed hybrid polaritons and can be switched on and off by means of ultraviolet and vis...
Gespeichert in:
Veröffentlicht in: | Nanophotonics (Berlin, Germany) Germany), 2024, Vol.13 (14), p.2541-2551 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Optical control is achieved on the excited state energy transfer between spatially separated donor and acceptor molecules, both coupled to the same optical mode of a cavity. The energy transfer occurs through the formed hybrid polaritons and can be switched on and off by means of ultraviolet and visible light. The control mechanism relies on a photochromic component used as donor, whose absorption and emission properties can be varied reversibly through light irradiation, whereas in-cavity hybridization with acceptors through polariton states enables a 6-fold enhancement of acceptor/donor contribution to the emission intensity with respect to a reference multilayer. These results pave the way for synthesizing effective gating systems for the transport of energy by light, relevant for light-harvesting and light-emitting devices, and for photovoltaic cells. |
---|---|
ISSN: | 2192-8606 2192-8614 2192-8614 |
DOI: | 10.1515/nanoph-2023-0677 |