A four-electron Zn-I2 aqueous battery enabled by reversible I−/I2/I+ conversion

Electrochemically reversible redox couples that embrace more electron transfer at a higher potential are the eternal target for energy storage batteries. Here, we report a four-electron aqueous zinc-iodine battery by activating the highly reversible I 2 /I + couple (1.83 V vs. Zn/Zn 2+ ) in addition...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2021-01, Vol.12 (1), p.170-170, Article 170
Hauptverfasser: Zou, Yiping, Liu, Tingting, Du, Qijun, Li, Yingying, Yi, Haibo, Zhou, Xing, Li, Zhuxin, Gao, Lujie, Zhang, Lan, Liang, Xiao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Electrochemically reversible redox couples that embrace more electron transfer at a higher potential are the eternal target for energy storage batteries. Here, we report a four-electron aqueous zinc-iodine battery by activating the highly reversible I 2 /I + couple (1.83 V vs. Zn/Zn 2+ ) in addition to the typical I − /I 2 couple (1.29 V). This is achieved by intensive solvation of the aqueous electrolyte to yield ICl inter-halogens and to suspend its hydrolysis. Experimental characterization and modelling reveal that limited water activity and sufficient free chloride ions in the electrolyte are crucial for the four-electron process. The merits of the electrolyte also afford to stabilize Zn anode, leading to a reliable Zn-I 2 aqueous battery of 6000 cycles. Owing to high operational voltage and capacity, energy density up to 750 Wh kg −1 based on iodine mass was achieved (15–20 wt% iodine in electrode). It pushes the Zn-I 2 battery to a superior level among these available aqueous batteries. Electrochemically reversible redox couples that embrace more electron transfer at a higher potential are desired for high energy density batteries. Here, the authors report a four-electron aqueous zinc-iodine battery by boosting the iodine electrochemistry in deliberately designed electrolytes.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-020-20331-9