Rainbow Connectivity Using a Rank Genetic Algorithm: Moore Cages with Girth Six

A rainbow t-coloring of a t-connected graph G is an edge coloring such that for any two distinct vertices u and v of G there are at least t internally vertex-disjoint rainbow (u,v)-paths. In this work, we apply a Rank Genetic Algorithm to search for rainbow t-colorings of the family of Moore cages w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied mathematics 2019, Vol.2019 (2019), p.1-7
Hauptverfasser: Olsen, M., González-Moreno, D., Gómez-Fuentes, M., Cervantes-Ojeda, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A rainbow t-coloring of a t-connected graph G is an edge coloring such that for any two distinct vertices u and v of G there are at least t internally vertex-disjoint rainbow (u,v)-paths. In this work, we apply a Rank Genetic Algorithm to search for rainbow t-colorings of the family of Moore cages with girth six (t;6)-cages. We found that an upper bound in the number of colors needed to produce a rainbow 4-coloring of a (4;6)-cage is 7, improving the one currently known, which is 13. The computation of the minimum number of colors of a rainbow coloring is known to be NP-Hard and the Rank Genetic Algorithm showed good behavior finding rainbow t-colorings with a small number of colors.
ISSN:1110-757X
1687-0042
DOI:10.1155/2019/4073905