Improving Passivation Process of Si Nanocrystals Embedded in SiO2 Using Metal Ion Implantation

We studied the photoluminescence (PL) of Si nanocrystals (Si-NCs) embedded in SiO2 obtained by ion implantation at MeV energy. The Si-NCs are formed at high depth (1-2 μm) inside the SiO2 achieving a robust and better protected system. After metal ion implantation (Ag or Au), and a subsequent therma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of nanotechnology 2013-01, Vol.2013 (2013), p.1-9
Hauptverfasser: Bornacelli, Jhovani, Reyes Esqueda, Jorge Alejandro, Rodríguez Fernández, Luis, Oliver, Alicia
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We studied the photoluminescence (PL) of Si nanocrystals (Si-NCs) embedded in SiO2 obtained by ion implantation at MeV energy. The Si-NCs are formed at high depth (1-2 μm) inside the SiO2 achieving a robust and better protected system. After metal ion implantation (Ag or Au), and a subsequent thermal annealing at 600°C under hydrogen-containing atmosphere, the PL signal exhibits a noticeable increase. The ion metal implantation was done at energies such that its distribution inside the silica does not overlap with the previously implanted Si ion . Under proper annealing Ag or Au nanoparticles (NPs) could be nucleated, and the PL signal from Si-NCs could increase due to plasmonic interactions. However, the ion-metal-implantation-induced damage can enhance the amount of hydrogen, or nitrogen, that diffuses into the SiO2 matrix. As a result, the surface defects on Si-NCs can be better passivated, and consequently, the PL of the system is intensified. We have selected different atmospheres (air, H2/N2 and Ar) to study the relevance of these annealing gases on the final PL from Si-NCs after metal ion implantation. Studies of PL and time-resolved PL indicate that passivation process of surface defects on Si-NCs is more effective when it is assisted by ion metal implantation.
ISSN:1687-9503
1687-9511
DOI:10.1155/2013/736478